Anvisningar till Falstads Kretsapplet
Gå
till appleten. | Vanliga
fel | förberedda
kretsar | Skapa
och ändra | Spara
Kort introduktion
Detta appletprogram är en elektronisk kretssimulator. När den startar
visar den en enkel LRC krets (om inte länk skrivaren har bestämt
en annan start konfiguration). Den gröna färgen betyder positiv spänning.
Grå färg betyder noll-potential eller jordad. Rött visar (tyvärr)
negativ spänning. De rörliga gula prickarna föreställer
konventionell ström (+ till -, ej elektronerna).
Appleten använder datorns CPU mycket intensivt. Det kan vara bra att stanna
appleten, genom att bocka i "stopped" om du skall göra andra
saker utan att "trögas ner" av en applet som går i bakgrunden.
För att öppna eller sluta en strömbrytare, klicka på det
med musen. När musen passerar över en komponent blir den ljusblå
och man ser en beskrivning av komponenten och dess tillstånd (till exempel:
spänning, ström, effekt) i nedre högra hörnet av fönstret.
Om man högerklickar (eller control-klick med Mac) när musen är
över en komponent kan man välja "Edit" (redigera) eller
"Delete" (ta bort) för att, till exempel, ändra resistansen
på en resistor.
Det kan finnas en till sex grafer i nederkanten av appleten, som fungerar som
oscilloskoper. Varje visar spänning (grön) och/eller ström (gul)
över en viss komponent. Eventuellt kan ström kurvan vara gömd
bakom spänningskurvan. Högsta (spännings)värdet i oscilloskop
fönster visas med text. När musen passerar en osciloskop då
blir komponenten som den är kopplad till färgmarkerad (ljusblå).
För att påverka en oscilloskop, högerklicka på den. Stack/Unstack
(stappla) innebär att lägga de ovanför/bredvid varandra. Man
kan ta bort, ändra svephastighet, välja visade storheter, ändra
skala.
För att skapa en oscilloskop som visar en komponent, högerklicka
på komponenten och välj View in Scope.
Om simulering går för sakta eller snabbt kan man andra med
Simulation Speed dragreglaget (det har ingen verkan om man inte
har tidsberoende komponenter typ kondensatorer, växelspänningskällor
eller dylikt). Current speed dragreglaget ändrar hastigheten som gula strömprickarna
går med. Power brightness reglerar hur starkt effektförbrukare skall
lysa (om du har under Options valt Show power. Show
voltage (visa spänning) kan inte väljas samtidigt.
Reset knappen återställer hastigheter till utgångsläget
(men tar inte bort ändringar du gjort i kretsen.)
Några vanliga fel
Ingen resistans
kopplad till en spänningskälla eller kondensator. Du
måste alltid ha NÅGON resistans, annars blir
strömmen oändlig. (Kortslutna kondensatorer
är tillåtna.)
Singular matrix! betyder att kretsen går inte ihop (2
olika spänningskällor hopkopplade) eller något annat som ger
en odefinerad spänning i någon punkt, ev. för att något
komponent har okopplade poler.
No konvergens --
en mycket komplicerade krets kan råka ut för att det
inte går att beräkna. Eventuellt kan [reset]
hjälpa
Förberedda kretsar
Menyn Circuits kan användas för att vissa mängder
av iordningställda kretsar. (Jag har bara hunnit översätta en
del!) När du har valt en krets du kan ändra den precis som du vill.
Valen som finns:
- Basics (grundläggande kretsar)
- Resistors: en uppsättning olika resistorer kopplade i serie
och parallellt.
- Capacitor: Denna visar en kondensator som kan laddas och urladdas
genom en strömbrytare
- Inductor: Denna visar en spole som kan bygga upp en magnetfält
och visa självinduktans när du växlar en omkoppplare..
- LRC
Circuit: Denna visa en svängningskrets med en spole, resistor
och kondensator. Du kan sluta strömbrytaren för att få igång
ström i spolen och sedan öppna strömbrytaren för att
se svängningen.
- Voltage
Divider: Denna visar en spänningsdelare som alstrar referensspänningar
7,5V, 5V och 2,5V fårn en 10 spänningskälla.
- Thevenins
Theorem Visar nederst en förenklad ersättningskrets to
kretsen ovan.
- Nortons
Theorem Visar nederst en förenklad ersättningskrets to
kretsen ovan.
- A/C Circuits (växelspänningskretsar)
- Capacitor:
en kondensator kopplad till en växelspänningskälla.
- Inductor
en spole kopplad till en växelspänningskälla.
- Caps of Various Capacitances: visar hur 3 olika kondensatorer reagera
på samma frekvens av växelspänning.
- Caps w/ Various Frequencies: visar hur 3 lika kondensatorer reagera
på olika frekvenser av växelspänning.Ju högre frekvens,
desto högre ström.
- Inductors of Various Inductances: visar hur 3 olika spolar reagera
på samma frekvens av växelspänning.
- Inductors w/ Various Frequencies: visar hur 3 lika spolar reagera
på olika frekvenser av växelspänning.Ju lägre frekvens,
desto högre ström.
- Impedances of Same Magnitude: shows a capacitor, an inductor, and
a resistor that have impedances of equal magnitude (but different phase). The peak current is the same in all three cases.
- Series
Resonance: shows three identical LRC circuits being driven by three
different frequencies. The middle one is being driven at the resonance frequency
(shown in the lower right corner of the screen as "res.f"). The
top one is being driven at a slightly lower frequency, and the bottom one
has a slightly higher frequency. The peak voltage in the middle circuit
is very high because it is resonating with the source.
- Parallel
Resonance: these three circuits have the inductor, resistor, and
capacitor in parallel instead of series. In
this case, the middle circuit is being driven at resonance, which causes
the current there to be lower than in the other two cases (because the impedance
of the circuit is highest at resonance).
- Passive Filters
- High-Pass
Filter (RC). The original
signal is shown at the lower left, and the filtered signal (with the low-frequency
part removed) is shown to the right. The breakpoint (-3 dB point) is shown
at the lower right, as f.3db. The input for this filter consists of two
AC sources back-to-back, which adds their voltages together. In real
life, you can't do this, but it comes in handy in this applet.
- Low-Pass
Filter (RC).
- High-Pass Filter (RL). This high-pass
filter uses an inductor rather than a capacitor.
- Low-Pass Filter (RL).
- Band-Pass Filter: this filter passes a range of frequencies close
to the resonance frequency (shown at the lower right, as "res.f").
- Notch Filter: Also known as a band-stop filter, this circuit filters
out a range of frequencies close to the resonance frequency.
- Twin-T Filter: This filter does a very good job of filtering out
60 Hz signals.
- Other Passive Circuits
- Series/Parallel
- Inductors in Series. The circuit
at left is equivalent to the circuit at right.
- Inductors in Parallel.
- Caps in Series.
- Caps in Parallel.
- Transformers
- Transformer:
A basic transformer circuit with an equal number of windings in each
coil.
- Transformer w/ DC: Here we try to pass a DC current through a
transformer.
- Step-Up Transformer: Here we step 10 V up to 100 V.
- Step-Down Transformer: Here we step 120 V down to 12 V.
- 3-Way Light Switches: shows how a light bulb can be turned on and
off from two locations.
- 3- and 4-Way Light Switches: shows how a light bulb can be turned
on and off from three locations.
- Differentiator: shows how a capacitor can act as a differentiator,
reflecting changes in voltage.
- Wheatstone
Bridge: shows a balanced Wheatstone bridge. If the bridge were not balanced, current would be flowing across
from one leg to the other.
- Critically Damped
LRC.
- Current Source: shows a source that keeps the current through the
circuit constant regardless of the switch positions.
- Inductive Kickback: In this circuit, we have a switch that controls
the supply of current to an inductor. An inductor resists any changes in current. If you open the switch, the inductor tries to maintain the same current;
it does this by charging the capacitance between the contacts of the switch. (Any two wires in close proximity have some parasitic capacitance
between them.) There is a small capacitor (much
larger than the actual value) across the switch terminals to simulate this. When you open the switch, the voltage goes very high; in real life,
this would cause arcing.
- Blocking Inductive Kickback: shows how inductive kickback can be
blocked with a “snubber” circuit.
- Power
Factor: This circuit shows an inductor being driven by an AC voltage.
The colors indicate power consumption; red means that a component is consuming
power, and green means that the component is contributing power. The left
side of the circuit represents the power companys side, and the right side
represents a factory (with a large induction motor).
The highly inductive load is causing the power company to work a lot harder
than normal for a given amount of power delivered. The graph on the
left indicates the power lost in the power companys equipment (the resistor
at top left). The graph in the middle is the power delivered to the factory.
The graph on the right is the power delivered to the inductor (and then
returned, causing the time average of power delivered to be zero).
Even though a peak power of 40 mW is being delivered to the factory, 200
mW is being dissipated in the power companys wires. This is why power companies
charge extra for inductive loads.
- Power Factor
Correction: Here a capacitor has been added to the circuit, causing
far less energy to be wasted in the power company’s wires (aside from
an initial spike to charge the capacitor).
- Resistor Grid: shows current flowing in a two-dimensional grid
of resistors.
- Resistor Grid 2.
- Coupled LC's
- LC Modes(2): Shows both modes of two coupled LC circuits.
- Weak Coupling.
- LC Modes(3): Shows all 3 modes of 3 coupled LC circuits.
- LC Ladder: This circuit is a simple model of a transmission line. A pulse propagates down the length of the ladder like a wave. The resistor at the end has a value equal to the characteristic
impedance of the ladder (determined by the ratio of L to C), which causes
the wave to be absorbed. A larger resistance
or an open circuit will cause the wave to be reflected; a smaller resistance
or a short will cause the wave to be reflected negatively. See the Feynman Lectures 22-6, 7.
- Phase-Sequence Network: This circuit generates a series of sine
waves with a phase difference of 90°.
- Diodes
- Half-Wave Rectifier: This circuit removes the negative part of
an input waveform.
- Full-Wave Rectifier: This circuit replaces a waveform with its
absolute value.
- Full-Wave Rectifier w/ Filter: This circuit smoothes out the rectified
waveform, doing a pretty good job of converting AC to DC.
- Diode I/V Curve: This demonstrates the response of a diode to an
applied voltage. The voltage source generates
a sawtooth wave, which starts out at –800 mV and slowly rises to 800
mV, and then immediately drops back down again.
- Diode Limiter.
- DC Restoration. This takes an AC signal
and adds a DC offset, making it a positive signal.
- Blocking Inductive Kickback: shows how inductive kickback can be
blocked with a diode.
- Spike Generator.
- Voltage Multipliers
- Voltage Doubler: Doubles the voltage in the AC input signal (minus
two diode drops), and turns it into DC.
- Voltage Doubler 2
- Voltage Tripler
- Voltage Quadrupler
- AM
Detector: This is a “crystal radio”, an AM radio receiver
with no amplifier. The raw antenna feed is shown
in the first scope slot in the lower left. The
inductor and the capacitor C1 are tuned to 3 kHz, the frequency shown in
the lower right as “res.f”. This
picks up the carrier wave shown in the middle scope slot. A diode is used to rectify this, and the C2 capacitor smoothes it
out to generate the audio signal in the last scope slot (which is simply
a 12 Hz sine wave in this example). By experimenting
with the value of C1’s capacitance, you can pick up two other “stations”
at 2.71 kHz and 2.43 kHz.
- Triangle-to-Sine Converter
- Transistors
- Switch.
- Emitter
Follower.
- Astable
Multivibrator: A simple oscillator. The
applet has trouble simulating this circuit, so there might be a slight delay
every time one of the transistors switches on.
- Bistable
Multivibrator (Flip Flop): This circuit has two states; use the
set/reset switches to toggle between them.
- Monostable
Multivibrator (One-Shot): When you hit the switch, the output will
go to 1.7 V for a short time, and then drop back down.
- Common-Emitter Amplifier: This circuit amplifies the voltage of
the input signal by about 10 times.
- Unity-Gain Phase Splitter: Outputs two signals 180° out of
phase from each other.
- Schmitt
Trigger.
- Current Source: The current is the same regardless of the switch
position.
- Current Source Ramp: Uses a current source to generate a ramp waveform
every time you hit the switch.
- Current Mirror: The current on the right is the same as the current
on the left, regardless of the position of the right switch.
- Differential Amplifiers
- Differential Input: This circuit subtracts the first signal from
the second and amplifies it.
- Common-Mode Input: This shows a differential amplifier with two
equal inputs. The output should be a constant
value, but instead the input waveforms make it through to the output (attenuated
rather than amplified). (When both inputs change together, that is called “common-mode
input”; the “common-mode rejection ratio” is the ability
of a differential amplifier to ignore common-mode signals and amplify
only the difference between the inputs.)
- Common-Mode w/Current Source: This is an improved differential
amplifier that uses a current source as a load. The common-mode rejection ratio is very good; the circuit
amplifies the small differences between the two inputs, and ignores the
common-mode signal.
- Push-Pull Follower: This is another type of emitter follower.
- Oscillators
- Colpitts Oscillator
- Hartley Oscillator
- Emitter-Coupled LC Oscillator
- JFETs
- JFET Current Source
- JFET Follower: This is like an emitter follower, except that the
output is 3V more positive than the input.
- JFET Follower w/zero offset
- Common-Source
Amplifier
- Volume Control: Here the JFET is used like a variable resistor.
- MOSFETs
- CMOS
Inverter: The white “H” is a logic input. Click on it to toggle its state. “H”
means “high” (5 V) and “L” means “low”
(0 V). The output of the inverter is shown at
right, and is the opposite of the input. In
this (idealized) simulation, the CMOS inverter draws no current at all.
- CMOS Inverter (w/capacitance): In reality, there are two reasons
that CMOS gates draw current. This circuit demonstrates the first reason: capacitance
between the MOSFET gate and its source and drain. It
requires current to charge this capacitance, which consumes power. It also causes a short delay when changing state.
- CMOS Inverter (slow transition): The other reason that CMOS gates
draw current is that both transistors will conduct at the same time when
the input is halfway between high and low. This causes a current spike when the input is in transition. In this circuit, there is a low-pass filter on the input which causes
it to transition slowly, so you can see the spike.
- CMOS Transmission Gate: This circuit will pass any signal, even
an analog signal (as long as it stays between 0 and 5 V) when the gate input
is “H”. When it’s “L”,
then the gate acts as an open circuit.
- CMOS Multiplexer: This circuit uses two transmission gates to select
one of two inputs. If the logic input is “H”,
then the output is a 40Hz triangle wave. If
it’s “L”, then the output is a 80Hz sine wave.
- Sample-and-Hold: Click and hold the “sample” button
to sample the input. When you release the button,
the output level will be held constant.
- Delayed Buffer: This circuit delays any changes in its input for
15 microseconds.
- Leading-Edge Detector
- Switchable Filter: Click the “L” to select from two
different low-pass filters.
- Voltage Inverter
- Inverter Amplifier: This shows how a CMOS inverter can be used
as an amplifier.
- Inverter Oscillator
- Op-Amps
- Amplifiers
- Inverting
Amplifier: This one has a gain of –3.
- Non-Inverting
Amplifier
- Follower
- Differential
Amplifier
- Summing
Amplifier
- Oscillators
- Relaxation
Oscillator
- Phase-Shift
Oscillator
- Triangle
Wave Generator
- Sine Wave Generator
- Sawtooth Wave Generator
- Voltage-Controlled Oscillator: Here the frequency of oscillation
depends on the input (shown in the scope on the left). The oscillator outputs a square wave and a triangle wave.
- Half-Wave Rectifier: An active rectifier that works on voltages
smaller than a diode drop.
- Full-Wave Rectifier
- Peak Detector: This circuit outputs the peak voltage of the input. Whenever the input voltage is higher than the output, the output
will be adjusted upward to match. Press the
switch marked “reset” to reset the peak voltage back to 0.
- Integrator
- Differentiator
- Schmitt
Trigger
- Negative Impedance Converter: Converts the resistor to a “negative”
resistor. In the first graph, note that the
current is 180° out of phase with the voltage.
- Gyrator: The
top circuit simulates the bottom circuit without using an inductor.
- Capacitance Multiplier: This circuit allows you to simulate a large
capacitor with a smaller one. The effective
capacitance of the top circuit is C1 x (R1/R2), and the effective resistance
is R2.
- Howland Current Source
- I-to-V Converter: The output voltage depends on the input current,
which you can adjust with the switches.
- 741 Internals:
The implementation of a 741 op-amp.
- 555 Timer Chip
- Square Wave Generator
- Internals: The implementation of a 555 chip, acting as a square
wave oscillator
- Sawtooth Oscillator
- Low-duty-cycle Oscillator: produces short pulses.
- Monostable Multivibrator: This is a one-shot circuit that will
produce a timed pulse when you click the “H”.
- Pulse Position Modulator: Produces pulses whose width is proportional
to the input voltage.
- Active Filters
- VCVS Low-Pass Filter: An active Butterworth low-pass filter.
- VCVS High-Pass Filter
- Switched-Capacitor Filter: A digital filter, implemented using
capacitors and analog switches.
- Logic Families
- RTL Logic Family
- RTL Inverter:
The white “H” is a logic input. Click
on it to toggle its state. “H”
means “high” (3.6 V) and “L” means “low”
(0 V). The output of the inverter is shown
at right, and is the opposite of the input.
- RTL NOR:
The three inputs are at the bottom, and the output is to the right. The output is “L” if any of the inputs are
“H”. Otherwise it’s “H”.
- RTL NAND: The output is “H” unless all three inputs
are “H”, and then it’s “L”.
- DTL Logic Family
- DTL Inverter
- DTL NAND
- DTL NOR
- TTL Logic Family
- TTL Inverter
- TTL NAND
- TTL NOR
- NMOS Logic Family
- NMOS Inverter
- NMOS Inverter 2: This uses a second MOSFET instead of a resistor,
to save space on a chip.
- NMOS NAND
- CMOS Logic
Family
- CMOS Inverter
- CMOS NAND
- CMOS NOR
- CMOS XOR
- CMOS
Flip-Flop (or latch): This circuit consists of two CMOS NAND gates.
- CMOS Master-Slave
Flip-Flop
- ECL Logic
Family
- ECL NOR/OR
- Combinational Logic
- Exclusive OR (XOR)
- Half Adder
- Full Adder
- 1-of-4 Decoder
- 2-to-1 Mux:
This multiplexer uses two tri-state buffers connected to the output.
- Majority Logic: The output is high if a majority of the inputs
are high.
- 2-Bit Comparator: Tells you if the two-bit input A is greater than,
less than, or equal to the two-bit input B.
- 7-Segment LED Decoder
- Sequential Logic
- Analog/Digital
- Phase-Locked Loops
- XOR Phase Detector: Shows an XOR gate being used as a type I phase
detector. The output is high whenever the two
input signals are not in phase.
- Type I PLL:
This phase-locked loop circuit consists of an XOR gate (the phase detector),
a low-pass filter (the resistor and capacitor), a follower (the op-amp),
and a voltage-controlled oscillator chip. The
voltage-controlled oscillator outputs a frequency proportional to the input
voltage. After the PLL circuit locks onto the
input frequency, the output frequency will be the same as the input frequency
(with a small phase delay).
- Phase Comparator (Type II): Shows a more sophisticated phase detector,
which has no output when the inputs are in phase, but outputs high (5V)
when input 1 is leading input 2, and low (0V) when input 2 is leading input
1. The phase comparator and VCO in this applet
are based on the 4046 chip.
- Phase Comparator Internals.
- Type II PLL: Shows a phase-locked loop with a type II phase detector. If you adjust the input frequency, the output should lock onto it
in a short time.
- Type II PLL (fast): Just a faster simulation of the type II PLL.
- Frequency Doubler
Ändra/skapa Kretsar
För att lägga in en ny komponent, högerklicka
i en oanvänd del av fönstret. Då får du en meny där
du kan välja komponent (eller åtgärd). Sedan klickar du där
du vill lägga första polen/kontakten och dra ut komponenten till där
du vill ha den andra polen. Meny posterna låter dig skapa:
Add wire- lägga till ledare (tråd).
Korsande trådar är inte sammankopplad om inte de möts på
en ändpunkt.
Add resistor-
lägg till resistor(er). Du kan välja resistans sedan
genom att höger klicka och välja "edit"
Passive Components: capacitors = kondensatorer;
inductor = spole; switch
= strömbrytare; push switch= tryckströmbrytare;
DPST switch= 2 polig växelkopplare;
transformer = transformator
transistors transistorer
voltage sources,(spänningskällor) 1-terminal
eller 2-terminal varianter. 1-terminal = en polig använder
jord som den andra polen Med höger klick kan du bestämma
spänning och vågform. Om det inte är DC = likspänning,
kan du ställa in frekvens och pålagrad likspänning,
DC offset.
op-amp, operationsförstärkare med matningsspänning
gränser -15V och +15V. Man kan justera gränserna med högerklick
och Edit.
text labels, Man måste "dra " lite när man lägger
ut "Hello" som kan ändras (båda innehåll och storlek och "inverted"
= överstreck) med högerklick och Edit.
scope probes; these have no effect on the circuit, but if
you select them and use the right mouse menu item View in Scope,
you can view the voltage difference between the terminals.
I undermenyn Other,finns det åtgärder
som låter dig dra omkring: poler, rader eller kolumner med poler, markerade
komponent, hela bilden. Det kan vara lämpligt att spara kretsen innan du
provar dessa.
Spara och sammansätta kretsar
File meny låter dig spara eller stoppa in kretsbeskrivningar.
Java säkerhetsregler brukar inte tillåta en applet att skriva filer
på datorn. Om du väljer File->Export så öppnas
ett litet fönster med beskrivningen av kretsen som du kan kopiera och klistra
in i Notepad eller annat program som kan spara text filer. Början kan se
ut som:
$ 1 5.0E-6 10.391409633455755 43 5.0 50
w 224 80 320 80 0
Jag fann att det inte kunde importeras om man inte ändrade talet efter
"$ 1 5.0E-6" till ett heltal, så här:
$ 1 5.0E-6 10 43 5.0 50
Sedan kan du spara filen. Om du sedan kopierar den och klistra in den i Import
för att ladda in den.
Om man har flera liknande småkretsar som man vill visa i en simulering,
kan man rita en i ett hörn (Lägg inte in oscilloskopen ännu)
och exportera den. Sedan dra den till en ledig plats och göra de ändringar
du vill och exportera den och klistra in den i slutet av föregående
fil. Ta bort inledningsraden för den andra kretsen! Nu har du en fil som
ritar upp båda samtidigt.
Till appletsidan i kursen
(men den finns nog redan i ett annat fönster).
java@falstad.com